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bstract

This paper will discuss the application of system identification techniques and robust control strategies to a proton exchange membrane fuel-cell
ystem. The fuel-cell system’s dynamic behaviour is influenced by many factors, such as the reaction mechanism, pressure, flow-rate, composition
nd temperature change, and is inherently non-linear and time varying. From a system point of view, however, the system can be modelled as a
wo-input, two-output linear time-invariant system whose inputs are hydrogen and air flow rates, and whose outputs are cell voltage and current.
n the other hand, the system’s non-linearities and time-varying characteristics can be regarded as system uncertainties and disturbances that are

reated by the designed robust controllers. This paper is comprised of three parts. First, system identification techniques were adopted to model

he system’s transfer functions. Second, the H∞ robust control strategies were applied to stabilise the system. Finally, the system’s stability and
erformance were compromised by introducing weighting functions to the controller’s design. From the experimental results, the designed H∞
obust controllers were deemed effective.

2006 Elsevier B.V. All rights reserved.
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. Introduction

As the levels of available fossil fuel decrease, alternative
nergy resources gain more and more attention. Among them,
he fuel cell is an important candidate to replace traditional fuel
ecause of its favourable features, such as low operational tem-
erature, fast power response, high power density, low noise
ollution, high system efficiency and environmental friendli-
ess. Until recently, fuel cells have been applied to many systems
uch as bikes, motorcycles, vehicles, boats, etc. [14,15]. As a
esult, the control of fuel cells to increase system efficiency and
tability is becoming more and more important. The traditional
ethodology for controlling fuel-cell systems is mainly linear
ontrol algorithms such as PI based diagonal controllers. How-
ver, these methods cannot fully satisfy the complex load change
equired for many applications, and may cause instability prob-

∗ Corresponding author. Tel.: +886 2 33662680; fax: +886 2 23631755.
E-mail address: fcw@ntu.edu.tw (F.-C. Wang).
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tion

ems. Therefore, more elegant control strategies, such as robust
ontrol, should be applied.

Rodatz et al. [1] presented a dynamic model of air supply
nd developed an LQG regulator for a proton exchange mem-
rane (PEM) fuel-cell system. From those results, performance
mprovements with the PI controller were noted. Moreover, the
ressure trace was successfully decoupled from the mass flow
race, while a faster response time was also achieved. Pukrush-
an et al. [2] developed an observer-based feedback controller to
rotect the fuel-cell stack from oxygen starvation during changes
n current commands, while the linear quadratic technique was
mployed based on the linearised state-space model. Sedghisi-
archi and Feliachi [3] developed an H∞ controller to regulate
he system’s output voltage under small load variations. In their
imulations, the output voltage variation was kept below 5% by
ontrolling the hydrogen flow rate. Caux et al. [4] were able

o control the air supply of a proton exchange membrane fuel-
ell (PEMFC) system under varying current loadings. Those
imulations proposed a species balance model to maintain con-
tant pressure on the cathode (oxygen) compartment and to

mailto:fcw@ntu.edu.tw
dx.doi.org/10.1016/j.jpowsour.2006.11.040
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ollow a desired air flow-rate. Takeuchi et al. [5] emphasized
he power management of fuel-cell systems interconnected with

utility grid, while successfully introducing typical topolo-
ies of fuel-cell based distributed generation systems. Jurado
nd Saenz [6] developed an adaptive controller of a fuel-cell
icro-turbine hybrid power plant. Considering the models’

ime-varying dynamics and the plants’ disturbances, the adap-
ive controller designed at a fixed operating point was utilised
o stabilise the system under different operating conditions.

The fuel-cell system demonstrated in this paper is designed
nd manufactured by Chung Shan Institute of Science and
echnology (CSIST) and assembled by DELTA Electronics. It
onsists of 15 cells that are connected with pre-treated Nafion®

12 membranes under a hot press process for optimum condi-
ions. The platinum loading is about 0.2 mg cm−2 at the anode
nd 0.4 mg cm−2 at the cathode. The cells are electrically con-
ected in series. The system’s inputs are hydrogen and air, while
ts outputs are cell voltage and current.

The fuel-cell system’s dynamics is non-linear and time vary-
ng. When the current load is changed, the voltage varies from 8.5
o 12 V as shown in Fig. 1, using the on-board controller. Because

steady power source is important for electrical equipment,
owever, robust control methodologies are selected in order to
rovide a steady voltage or current when the operating condi-
ions change. Robust control is well known for its capability of
ealing with system uncertainties and disturbances [8–10,12].
urthermore, the implementation of robust controllers is rather
imple because the parameters are constant. Compared to other
dvanced control strategies such as adaptive or gain-scheduling
ontrol [13], in which the parameters need to be updated accord-
ng to the system’s responses, robust controllers are much easier
o implement.

This paper is arranged in the following sections. In Section
, the fuel-cell system’s dynamics is introduced, and further
implified as an SISO linear system by the system identifica-

ion techniques, in which the un-modelled dynamics is treated
s system variations. Section 3 discusses robust control strate-
ies and their design to achieve the systems’ maximum stability
ounds. Section 4 introduces weighting functions and explains

Fig. 1. The voltage variation as the load current is changed.
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heir improvement of closed-loop systems’ overall performance.
inally, Section 5 discusses some conclusions that have been
rawn from this analysis.

. System identification of the fuel-cell system

In this section, the fuel-cell system will be introduced and
implified as a linear model. The system transfer functions are
btained by a dynamic signal analyser, HP 35670A, and will
hen be used for the controller design in the following sections.

.1. System description

The fuel-cell stack is designed and manufactured by CSIST
nd assembled by DELTA Electronics. It consists of 15 cells
ith the active area of 50 cm2 on each on them. The cells are

onnected with a pre-treated membrane – Nafion® 112 – by
ot press for optimum conditions. Platinum loading is about
.2 mg cm−2 at anode and 0.4 mg cm−2 at cathode. The cells
re electrically connected in series, with rated and peak power
utputs of 117 W at 9 V and 124 W at 7.8 V, respectively. The
aximum efficiency of the fuel cell stack is 37% (LHV) under

ry H2/air and humidification-free conditions.
The dynamics of the fuel-cell system is influenced by many

actors, including the diffusion dynamic, the Nernst equation,
roton concentration dynamics and cathode kinetics as illus-
rated in Fig. 2:

iffusion dynamic : Rohm = Rref + αT(T − Tref), (1)

Nernst equation :

E = Eref + dE0

dT
(T − Tref) + k

RT

2F
ln(PH2P

1/2
O2

), (2)

Proton concentration dynamics :

u

(
−∂cH+

∂t

)
∂cH+

∂t
+ cH+

τH+
= 1 + αH+j3

τH+
, (3)

athode kinetics : η = b ln

{
P10

P

[H+]0

H+

(
1 + jr

j A

)}
.

1 0 r
(4)

rom this point of view, the system can be represented as
he MIMO block diagram shown in Fig. 3 with the following

Fig. 2. The dynamics of the fuel cell system.
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Table 1
The operating conditions of the system

Load (A) Input

H2 Air

2 1.2(LPM), 7 psi 50 mHz–100 Hz sine wave
(level: 2 V, offset: 4 V)

3 1.2(LPM), 7 psi 50 mHz–100 Hz sine wave
(level: 2 V, offset: 4 V)
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functions are illustrated in Tables 2–5. Those linearised models
will be used for a discussion of robust controller design in the
following sections.
Fig. 3. The block diagrams of the fuel cell system.

elations [11]:

cell = G1Nair + G3NH2 , (5)

cell = G2Nair + G4NH2 + Rjcell, (6)

here G1–G4 represent the input–output relations of the system.
ince the dynamics of the fuel-cell system is non-linear and

ime varying, the system of (5) and (6) is inherently non-linear
nd time varying as well. By fixing the hydrogen input and
urrent output, the system is further simplified as a SISO system
n the following:

cell = G2Nair. (7)

.2. System identification

The non-linear system G2 of (7) can be approximated by
inear models at various operating points, given the input and
utput signals of the system. When considering a linear system
ith the sinusoidal input r = α cos(ωt), as shown in Fig. 4, the
utput y are measured at N sampled points such that the system
ransfer functions can be calculated by the system identification

ethod described as follows [7]:

c = 1

N

N∑
t=1

y(t) cos(ωt), (8)

s = 1

N

N∑
t=1

y(t) sin(ωt), (9)

ĜN (ejω)| =
√

I2
c (N) + I2

s (N)

α/2
, (10)

ˆ
N (jω) = argĜN (ejω) = − arctan

Is(N)

Ic(N)
, (11)

here |ĜN (ejω)| and ϕ̂N (jω) are the gain and phase of the system
t frequency ω.
To model the system transfer function more efficiently, a
ynamic Signal Analyzer (DSA) HP 35670A is utilized. At first,
swept-sine analogue voltage signal, which is generated from

he analyser, is sent to both of the air pump and channel-one of the

Fig. 4. A linear system.
1.2(LPM), 7 psi 50 mHz–100 Hz sine wave
(level: 2 V, offset: 5 V)

SA to obtain the mathematical models of the system. Since the
urrent of the input signal is in the scale of 1 mA, while the driv-
ng current of the air-pump measures approximately 500 mA, a
ower amplifier circuit is constructed to actuate the air pump.
nder different operating conditions, such as those illustrated

n Table 1, the output voltage of the fuel-cell system can be
onnected to channel-two of the DSA for system identification.
urthermore, to capture the system dynamics, the frequency
ange of input signals is set at between 0.05 and 100 Hz with
00 sampled frequencies. At each sampled frequency, the sys-
em gain and phase are calculated from (8) to (11), allowing the
ystem transfer functions to be estimated from the frequency
esponse diagrams. The experimental set-up of the system is
llustrated in Fig. 5.

The frequency responses diagrams (Bode plots) of the fuel-
ell system, under different loading conditions (2 A, 3 A and
A), are illustrated in Fig. 6. Here, the approximate linear trans-

er functions of first-, second- and third-order are selected to
t the frequency responses appropriately. It is noted that the
ir-pump dynamics was also modelled in the transfer func-
ions during the identification procedures. It is arranged in this
ay because the air-pump dynamics cannot be singled out in

he control process. Lower-order models of the system can be
sed if the high frequency responses are insignificant for the
ystems.

Three experiments were executed for each operation condi-
ions to consider the system variations: the resulting transfer
Fig. 5. The experimental setup for system identification.
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Fig. 6. The Bode plots of the system under three different operation conditions.

Table 2
Identification of the first-order transfer functions

No. Load (A)

2 3 4

1 G11 = 0.0010s + 0.2630

s + 0.2741
G21 = 0.0170s + 0.6192

s + 0.6501
G31 = 0.0014s + 0.3254

s + 0.5244

2 G12 = 0.0023s + 0.2502

s + 0.3521
G22 = 0.0181s + 0.6427

s + 0.5913
G32 = 0.0023s + 0.3895

s + 0.8171

3 G13 = 0.0050s + 0.3294

s + 0.4557
G23 = 0.0129s + 0.5959

s + 0.5501
G33 = 0.0001s + 0.3386

s + 0.7354

Table 3
Identification of the second-order transfer functions

No. Load (A)

2 3 4

1 G11 = 0.0008s2 + 0.2372s + 0.0198

s2 + 0.3187s + 0.0438
G21 = 0.0086s2 + 0.4856s + 0.5118

s2 + 1.2193s + 0.6338
G31 = 0.0040s2 + 0.3774s + 0.9233

s2 + 3.4565s + 1.4539

2 G12 = 0.0029s2 + 0.3073s + 0.1879

s2 + 1.2324s + 0.2176
G22 = 0.0052s2 + 0.4289s + 2.6402

s2 + 4.391s + 2.5485
G32 = 0.0043s2 + 0.4298s + 0.5780

s2 + 2.4117s + 1.1781

3 G13 = 0.0039s2 + 0.3160s + 0.3955

s2 + 1.6182s + 0.5636
G23 = 0.0010s2 + 0.2181s + 9.5332

s2 + 16.1856s + 8.9642
G33 = 0.0051s2 + 0.4499s + 0.9693

s2 + 3.9035s + 1.9979
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Table 4
Identification of the third-order transfer functions

No. Load (A)

2 3 4A

1 G11 = 0.0026s3 + 0.2806s2 + 0.5943s + 0.1943

s3 + 2.8472s2 + 1.3094s + 0.2734
G21 = 0.0049s3 + 0.4163s2 + 2.6487s + 0.4103

s3 + 5.3781s2 + 5.1796s + 2.0519
G31 = 0.0023s3 + 0.3263s2 + 5.4754s + 11.1666

s3 + 15.2201s2 + 43.5656s + 17.4807

2 G12 = 0.0036s3 + 0.3129s2 + 0.8772s + 0.9834

s3 + 3.1372s2 + 5.2340s + 1.2132
G22 = 0.0015s3 + 0.2330s2 + 6.4609s + 2.5733

s3 + 10.9154s2 + 9.9708s + 2.6322
G32 = 0.0031s3 + 0.4162s2 + 2.9779s + 2.7421

s3 + 8.1131s2 + 13.3834s + 5.6468

3 G13 = 0.0017s3 + 0.2556s2 + 2.9615s + 0.4103

s3 + 9.7338s2 + 5.3668s + 0.6996
G23 = 0.0002s3 + 0.0492s2 + 12.7968s + 0.2916

s3 + 21.9285s2 + 12.1025s + 0.1491
G33 = 0.0003s3 + 0.1219s2 + 10.6176s + 33.8400

s3 + 22.8709s2 + 126.5667s + 70.0607

Table 5
The gap metric and stability margin of the first-order systems (with minimization of the maximum gap and the corresponding stability bound in boxes)

G11 G12 G13 G21 G22 G23 G31 G32 G33 b(G, K)

G11 0.0000 0.1465 0.1391 0.2829 0.3076 0.2837 0.2081 0.3150 0.3274 0.9280
G12 0.1465 0.0000 0.0805 0.2887 0.3202 0.2992 0.0789 0.1727 0.1862 0.9530

G13 0.1391 0.0805 0.0000 0.2115 0.2451 0.2257 0.0707 0.1808 0.1932

G21 0.2829 0.2887 0.2115 0.0000 0.0664 0.0643 0.2288 0.3117 0.3238 0.9316
G22 0.3076 0.3202 0.2451 0.0664 0.0000 0.0295 0.2738 0.3730 0.3859 0.9193
G23 0.2837 0.2992 0.2257 0.0643 0.0295 0.0000 0.2671 0.3716 0.3846 0.9186
G31 0.2081 0.0789 0.0707 0.2288 0.2738 0.2671 0.0000 0.1110 0.1241 0.9619
G32 0.3150 0.1727 0.1808 0.3117 0.3730 0.3716 0.1110 0.0000 0.0314 0.9756
G33 0.3274 0.1862 0.1932 0.3238 0.3859 0.3846 0.1241 0.0314 0.0000 0.9768

Max. 0.3274 0.3202 0.3238 0.3859 0.3846 0.2738 0.3730 0.3859

Table 6
The gap metric and stability margin of the second-order systems (with minimization of the maximum gap and the corresponding stability bound in boxes)

G11 G12 G13 G21 G22 G23 G31 G32 G33 b(G, K)

G11 0.0000 0.2844 0.1869 0.3292 0.3696 0.3826 0.1471 0.2407 0.2452 0.9406
G12 0.2844 0.0000 0.1082 0.3248 0.3323 0.3096 0.1463 0.2537 0.2582 0.9459

G13 0.1869 0.1082 0.0000 0.2465 0.2488 0.2218 0.0469 0.1555 0.1600

G21 0.3292 0.3248 0.2465 0.0000 0.1240 0.1373 0.2649 0.2792 0.3020 0.9283
G22 0.3696 0.3323 0.2488 0.1240 0.0000 0.0372 0.2731 0.3401 0.3445 0.9126
G23 0.3826 0.3096 0.2218 0.1373 0.0372 0.0000 0.2569 0.3524 0.3568 0.9135
G31 0.1471 0.1463 0.0469 0.2649 0.2731 0.2569 0.0000 0.1095 0.1141 0.9622
G32 0.2407 0.2537 0.1555 0.2792 0.3401 0.3524 0.1095 0.0000 0.0320 0.9760
G33 0.2452 0.2582 0.1600 0.3020 0.3445 0.3568 0.1141 0.0320 0.0000 0.9776

Max. 0.3826 0.3323 0.3292 0.3696 0.3826 0.2731 0.3524 0.3568

Table 7
The gap metric and stability margin of the third-order systems (with minimization of the maximum gap and the corresponding stability bound in boxes)

G11 G12 G13 G21 G22 G23 G31 G32 G33 b(G,K)

G11 0.0000 0.0907 0.1062 0.3274 0.3266 0.4627 0.1281 0.2219 0.2164 0.9412
G12 0.0907 0.0000 0.1509 0.3238 0.3351 0.4059 0.1134 0.2277 0.2299 0.9488
G13 0.1062 0.1509 0.0000 0.2453 0.2528 0.5382 0.0503 0.1407 0.1436 0.9549
G21 0.3274 0.3238 0.2453 0.0000 0.1074 0.4183 0.2624 0.2784 0.2998 0.9273

G22 0.3266 0.3351 0.2528 0.1074 0.0000 0.3189 0.2796 0.3289 0.3403

G23 0.4627 0.4059 0.5382 0.4183 0.3189 0.0000 0.5054 0.6021 0.6039 0.9052
G31 0.1281 0.1134 0.0503 0.2624 0.2796 0.5054 0.0000 0.1168 0.1188 0.9618
G32 0.2219 0.2277 0.1407 0.2784 0.3289 0.6021 0.1168 0.0000 0.0359 0.9758
G33 0.2164 0.2299 0.1436 0.2998 0.3403 0.6039 0.1188 0.0359 0.0000 0.9769

Max. 0.4627 0.4059 0.5382 0.4183 0.6039 0.5054 0.6021 0.6039
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. Robust stability design

In this section, robust control strategies will be introduced.
rom the analyses of gap metrics and coprime factorisation,
obust controllers are designed to provide the maximum stability
ound for the fuel-cell system. The resulting controllers are then
erified from both simulations and experiments.

.1. Principles of robust control

Robust controllers can be designed for the identified linear
odels by using robust control strategies, such as Small Gain
heorem, perturbations of coprime factors, stability margin and
ap metric [8–10]. A system is said to be well-posed if all closed-
oop transfer matrices are well-defined and proper. Furthermore,

closed-loop system is said to be internally stable if all the
ystem states are asymptotically stable, i.e., the states go to zero
rom all initial state conditions when the input signals are zero.

heorem 1 (Small Gain Theorem [8]). Suppose M ∈ RH∞ and
et γ > 0. Then the interconnected system shown in Fig. 7 is
ell-posed and internally stable for all 
(s) ∈ RH∞ with

(a) ||Δ||∞ ≤ 1/γ if and only if ||M(s)||∞ < γ;
b) ||Δ||∞ < 1/γ if and only if ||M(s)||∞ < γ ,

where ||G||∞ is the ∞ norm of system G.

uppose that a nominal plant G0 can be expressed as G0 = MN−1,
here (l) M,N ∈ RH∞ and (2) MM* + NN* = I,∀�. This is called a
ormalised left coprime factorisation of G0. Now, let us suppose
hat a perturbed system GΔ with the block diagram of Fig. 8 is

xpressed as:

Δ = (M + ΔM)−1(N + ΔN ), (12)

Fig. 7. Small Gain Theorem.

ig. 8. The block diagram of GΔ = (M + ΔM)−1 (N + ΔN) with feedback con-
roller K.

Δ

G

g
K
K
l
t

3

a

F
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ith ||[ΔM, ΔN]||∞ < ε, ΔM, ΔN ∈ RH∞, the system transfer
unctions can be simplified as follows:

z1

z2

]
=

[
K

I

]
(I − GK)−1M−1ω

=
[

K

I

]
(I − GK)−1[I G]ω. (13)

ence, from Theorem 1, the closed-loop system remains inter-
ally stable for all ||[ΔM, ΔN]||∞ < ε if and only if∥∥∥∥∥
[

K

I

]
(I − GK)−1M−1

∥∥∥∥∥∞
≤ 1

ε
,

or equivalently

∥∥∥∥∥
[

K

I

]
(I − GK)−1[I G]

∥∥∥∥∥∞
≤ 1

ε
.

(14)

efined the stability margin b(G, K) of the closed-loop system
s follows:

(G, K) ≡
∥∥∥∥∥
[

K

I

]
(I − GK)−1[I G]

∥∥∥∥∥
−1

∞
, (15)

rom Theorem 1 the closed-loop system is internally stable for
ll ||[ΔM, ΔN]||∞ < ε if and only if b(G, K) ≥ ε.

It is further noted that the coprime factorisation of a system
s not unique. That is, there is more than one expression for G0
nd GΔ. Therefore, the gap between two systems G0 and GΔ

an be defined as:

efinition 2 (Gap metric [8]). The smallest value of ||[ΔM,
N]||∞ which perturbs G0 into GΔ, is called the gap between
0 and GΔ, and is denoted as δ(G0, GΔ).

Thus, b(G0, K) gives the radius (in terms of the distance in the
ap metric) of the largest ball of plants stabilised by controller
. Therefore, the design goal is to derive a suitable controller
from a nominal plant G0, such that all perturbed plants Gi

ocated inside the gap δ(G0, Gi) < ε will satisfy b(G0, K) ≥ ε and
he closed-loop system remains internally stable.

.2. Robust controller design

To perform robust controller design, several nominal plants
re selected as follows:

irst-order system, G0 1(s) = 0.0050s + 0.3294

s + 0.4557
, (16)

Second-order system :

G0 2(s) = 0.0039s2 + 0.03160s + 0.3955

s2 + 1.6182s + 0.5636
, (17)
Third-order system :

G0 3(s) = 0.0015s3 + 0.2330s2 + 6.4609s + 2.5733

s3 + 10.9154s2 + 9.9708s + 2.6322
.

(18)
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Fig. 9. The experimental setup of the PEMFC control system.

he choices of the nominal plants G0(s) are based on the calcula-
ion of system gaps between the nominal plants and the perturbed
lants such that the maximum gap is minimized as:

in
G0

max δ(G0, Gi).

or instance, for the first-order system, G13 is chosen as the
ominal plant because the maximum gap between G13 and
ther plants is 0.2451—the minimum for all systems (shown
n Table 5).

By applying robust control to the nominal plants, the resulting
∞ controllers are:
irst-order system, K1(s) = −0.3263, (19)

econd-order system : K2(s) = −0.3234s − 0.3776

s + 1.2079
, (20)

w
t
w
i

ig. 10. The output voltage responses of (a) K1(s) for 2 A loads, (b) K2(s) for 3 A loa
A → 2 A → 4 A.
Sources 164 (2007) 704–712

hird-order system : K3(s) = −0.4483s2 − 4.6502s − 1.5751

s2 + 11.4022s + 4.2596
.

(21)

he stability bounds of the controllers are b(G, K) = 0.9522,
.9527 and 0.9131, respectively (Tables 5–7). It must be noted
hat the maximum gaps between the nominal plants and the per-
urbed plants are always less than the stability bound, such that
nternal stability can be achieved for all system variations by
sing the designed controllers.

.3. Experimental results

The designed controllers were implemented to verify the
ffects. For the experiments, a closed-loop control system of
he PEM fuel-cell system was developed by using the National
nstrument’s (NI) Data Acquisition (DAQ) card and Simulink.
his was accomplished by transferring the control signal through

he output port of the DAQ card and by measuring the volt-
ge of the PEMFC system to the input port of the DAQ
ard. A step-down circuit was constructed to divide the mea-
ured fuel-cell voltage by 2 to protect the DAQ card since
he allowable voltage range of the DAQ card is from −10
o +10 V, while the maximum voltage of the PEM fuel-cell
ystem is about 14 V. The experimental set-up of the PEM
uel-cell control system is illustrated in Fig. 9. The output
esponses of the closed-loop systems are shown in Fig. 10,

here the controllers (19)–(21) were implemented to con-

rol the fuel-cell system under different loading conditions
hen the reference voltage was set at 9.5 V First of all, it

s noted that the closed-loop systems remain stable under

ds, (c) K3(s) for 4 A loads, and (d) K1(s), (e) K2(s), (f) K3(s) for current setting
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Fig. 11. The robust controller design with weighting functions.

ystem variations. Secondly, the controlled voltage of the air-
ump was 5–6 V. Finally, the output voltage was approximately
0–11 V, while the reference (or desired) voltage was set at
.5 V.

From the experimental results, it is shown that the closed-
oop systems are stabilised by the designed robust controllers.
owever, it is also noted that the system performance is not

atisfactory because the controllers were designed to achieve
he maximum stability bound, such that system performance
as relatively ignored. For example, in the experiments the ref-

rence voltage was set at 9.5 V, but the output voltage varied

rom 10 to 11 V. Therefore, it is necessary to consider the over-
ll performance criteria by adding weighting functions into the
ontroller design. These issues are discussed in the following
ection.

K

w

Fig. 12. The output voltage responses of the fuel-cell system with K4(s)
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. Robust performance design

The controller design discussed in Section 3 focused on the
tability of the closed-loop systems: the design criterion was
o discover the maximum stability bound to cope with system
ncertainties. However, the system performance was relatively
gnored, as shown in the system responses of Fig. 10. Therefore,
n this section, weighting functions will be introduced to improve
he system performance. It will be shown from the results that
he system performance is significantly improved by sacrificing
little stability bound.

.1. Weighting function selection

There were steady-state errors between the reference and the
ystem outputs, as illustrated in Fig. 10. To track the reference
ommand, an integral was added to the weighting functions.
irst, a weighting function W(s) = (s + 1)/s was added to the con-

roller design, as illustrated in Fig. 11. For the third-order system
ith the nominal plant G0 3(s) of (18), the robust controller was

ound as:
4(s) = 1.1731s3 + 12.9120s2 + 12.6523s + 3.2806

s3 + 12.0124s2 + 14.1096s + 3.8368
, (22)

ith a maximum stability bound b(G0 3, K4) = 0.6499.

under loadings: (a) 2 A, (b) 3 A, (c) 4 A and (d) 2 A → 3 A → 4 A.
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.2. Experimental results

The experimental results using the designed robust controller
4(s) are shown in Fig. 12, where the reference voltage is

et at 9.5 V while the loadings are set at 2 A, 3 A, 4 A and
A → 3 A → 4 A, respectively. It is shown that the closed-loop

ystem is internally stable for system perturbations, and that the
teady-state error is zero because of the integral factor of the
eighting function. It is noted the use of the weighting func-

ion can be regarded as a compromise between the stability
nd performance. As the system performance is improved using
he controller K4(s), the relative stability bound of the closed-
oop systems is decreased from b(G0 3, K3) = 0.9131 to b(G0 3,

4) = 0.6499. That is, the system robustness is reduced.

. Conclusion

This paper has proposed system identification techniques and
obust control methods for a PEM fuel-cell system. From system
dentification, the fuel-cell system was modelled as an MIMO
ystem, which was further simplified to an SISO system by fix-
ng the hydrogen input and the current output. By selecting the
ominal plants, the system variations were regarded as system
ncertainties and disturbances that were treated by the proposed
obust controllers. At first, a robust controller was designed to
chieve the closed-loop systems’ maximum stability margins.
hen, weighting functions were introduced to improve the sys-
em’s overall performance. The experiments have shown that
he designed robust controllers can achieve good system perfor-

ance and stability. Although this paper has been limited to the
ISO robust controller design only, it is important to note that

[

[
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he principles of developing an MIMO robust controller will be
imilar and could be applied widely.
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